Skip to main content

Advertisement

Log in

The urban heat island accelerates litter decomposition through microclimatic warming in temperate urban forests

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Forests worldwide are experiencing fragmentation, with especially important consequences for ecosystems bordering urbanized areas. Urban forests are exposed to local warming due to the urban heat island which affects their biodiversity and ecosystem functioning. A key ecosystem function affecting carbon and nutrient cycling in forests is litter decomposition, a process driven by the local microclimate. Thus, our aim was to clarify the impact of the urban heat island on litter decomposition in urban forests. We studied soil microclimate and litter decomposition in six urban forests across Europe and along local gradients from the urban forest edge to the interior. To quantify decomposition independent from local forest composition and litter quality, we used standardized green tea and rooibos tea litterbags. We determined the role of the soil microclimate and other environmental drivers for litter decomposition. Secondly, we assessed effects of edge proximity and landscape context on the soil microclimate. Soil characteristics were only driving green tea and not rooibos tea decomposition. On the contrary, higher soil temperatures resulted in faster rates of litter decomposition for both green and rooibos tea and were related to the proximity to the forest edge and the proportion of built-up area in the landscape. Via structural equation modelling we detected cascading effects of the urban heat island on litter decomposition. Such changes in litter decomposition have the potential to alter the soil food web, nutrient cycling and carbon drawdown in urban forests, and could result in significant interactions between urbanisation and ongoing climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data is available online through Figshare: https://doi.org/10.6084/m9.figshare.19771105.v1.

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5:170191

    Article  PubMed  PubMed Central  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  ADS  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Aulsebrook AE, Jones TM, Mulder RA, Lesku JA (2018) Impacts of artificial light at night on sleep: A review and prospectus. J Exp Zool A Ecol Integr Physiol 329:409–418

    Article  PubMed  Google Scholar 

  • Baklanov A, Molina LT, Gauss M (2016) Megacities, air quality and climate. Atmos Environ 126:235–249

    Article  ADS  CAS  Google Scholar 

  • Barbati A, Marchetti M, Chirici G, Corona P (2014) European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For Ecol Manage 321:145–157

    Article  Google Scholar 

  • Barton K (2019) MuMIn: multi-model inference. R package. https://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Baudry O, Charmetant C, Collet C, Ponette Q (2014) Estimating light climate in forest with the convex densiometer: operator effect, geometry and relation to diffuse light. Eur J Forest Res 133:101–110

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant Litter: Decomposition. Carbon Sequestration Springer-Verlag, Berlin, Heidelberg, Germany, Humus Formation

    Book  Google Scholar 

  • Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, Dirnböck T, Dörfler I, Heinken T, Hermy M, Hommel P, Jaroszewicz B, Keczyński A, Kelly DL, Kirby KJ, Kopecký M, Macek M, Máliš F, Mirtl M, Mitchell FJG, Naaf T, Newman M, Peterken G, Petřík P, Schmidt W, Standovár T, Tóth Z, Calster HV, Verstraeten G, Vladovič J, Vild O, Wulf M, Verheyen K (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Change Biol 21:3726–3737

    Article  ADS  Google Scholar 

  • Blood A, Starr G, Escobedo F, Chappelka A, Staudhammer C (2016) How Do Urban Forests Compare? Tree Diversity in Urban and Periurban Forests of the Southeastern US. Forests 7:120

    Article  Google Scholar 

  • Bocci G (2015) TR8: an R package for easily retrieving plant species traits. Methods Ecol Evol 6:347–350

    Article  Google Scholar 

  • Bonan GB, Hartman MD, Parton WJ, Wieder WR (2013) Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4). Glob Change Biol 19:957–974

    Article  ADS  Google Scholar 

  • CIESIN (2016) Global Urban Heat Island (UHI) Data Set, 2013. In: C. U. Center for International Earth Science Information Network (CIESIN), editor., Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC)

  • Chen JQ, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology - Variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297

    Article  Google Scholar 

  • Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V (2016) Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations. Plant Soil 398:229–241

    Article  CAS  Google Scholar 

  • citypopulation.de. https://www.citypopulation.de/en/france/cities/. Accessed 19 Jan 2021

  • Coleman K, Jenkinson DS (1996) RothC-26.3 - A Model for the turnover of carbon in soil. Pages 237–246. Springer Berlin Heidelberg, Berlin, Heidelberg

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA (2011) Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Article  ADS  Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66

    Article  PubMed  Google Scholar 

  • Cusack DF (2013) Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol Biochem 57:192–203

    Article  CAS  Google Scholar 

  • Dale AG, Frank SD (2017) Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE 12;e0173844

  • De Frenne P, Cougnon M, Janssens GPJ, Vangansbeke P (2022) Nutrient fertilization by dogs in peri-urban ecosystems. Ecol Solut Evid 3:e12128

  • De Pauw K, Depauw L, Cousins S, De Lombaerde E, Diekmann M, Frey D et al (2023) Data on litter decomposition experiment in six urban forests. figshare. https://doi.org/10.6084/m9.figshare.19771105.v1 (Dataset)

    Book  Google Scholar 

  • De Smedt P, Baeten L, Proesmans W, Van de Poel S, Van Keer J, Giffard B, Martin L, Vanhulle R, Brunet J, Cousins SAO, Decocq G, Deconchat M, Diekmann M, Gallet-Moron E, Le Roux V, Liira J, Valdés A, Wulf M, Andrieu E, Hermy M, Bonte D, Verheyen K (2019) Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Divers Distrib 25:963–974

    Article  Google Scholar 

  • de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  • Demuzere M, Bechtel B, Middel A, Mills G (2019) Mapping Europe into local climate zones. PLoS ONE 14:e0214474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depauw L, Perring MP, Landuyt D, Maes SL, Blondeel H, De Lombaerde E, Brumelis G, Brunet J, Closset-Kopp D, Czerepko J, Decocq G, den Ouden J, Gawrys R, Hardtle W, Hedl R, Heinken T, Heinrichs S, Jaroszewicz B, Kopecky M, Liepina I, Macek M, Malis F, Schmidt W, Smart SM, Ujhazy K, Wulf M, Verheyen K (2020) Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J Ecol 108:1411–1425

    Article  CAS  Google Scholar 

  • Eaton E, Caudullo G, Oliveira S, de Rigo D (2016) Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp 160–163

    Google Scholar 

  • Endreny TA (2018) Strategically growing the urban forest will improve our world. Nat Commun 9:1160

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Enedino TR, Loures-Ribeiro A, Santos BA (2018) Protecting biodiversity in urbanizing regions: The role of urban reserves for the conservation of Brazilian Atlantic Forest birds. Perspect Ecol Conserv 16:17–23

    Google Scholar 

  • Enloe HA, Lockaby BG, Zipperer WC, Somers GL (2015) Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics. Urban Ecosyst 18:1285–1303

    Article  Google Scholar 

  • Epp Schmidt DJ, Pouyat R, Szlavecz K, Setälä H, Kotze DJ, Yesilonis I, Cilliers S, Hornung E, Dombos M, Yarwood SA (2017) Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat Ecol Evol 1:0123

    Google Scholar 

  • Estoque RC, Murayama Y, Myint SW (2017) Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577:349–359

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eurostat (2021) City statistics. Population on 1 January by age groups and sex - cities and greater cities. Dataset. https://ec.europa.eu/eurostat/databrowser/view/urb_cpop1/default/table?lang=en

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Fitter AH, Peat HJ (1994) The ecological flora database. J Ecol 82:415–425

    Article  Google Scholar 

  • Fung TK, Richards DR, Leong RAT, Ghosh S, Tan CWJ, Drillet Z, Leong KL, Edwards PJ (2022) Litter decomposition and infiltration capacities in soils of different tropical urban land covers. Urban Ecosyst 25:21–34

    Article  Google Scholar 

  • Garvey SM, Templer PH, Pierce EA, Reinmann AB, Hutyra LR (2022) Diverging patterns at the forest edge: Soil respiration dynamics of fragmented forests in urban and rural areas. Glob Change Biol 28:3094–3109

    Article  CAS  Google Scholar 

  • Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol 147:21–35

    Article  Google Scholar 

  • Géron C, Lembrechts JJ, Borgelt J, Lenoir J, Hamdi R, Mahy G, Nijs I, Monty A (2021) Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol Invasions 23:1765–1779

    Article  Google Scholar 

  • Godefroid S, Massant W, Koedam N (2005) Variation in the herb species response and the humus quality across a 200-year chronosequence of beech and oak plantations in Belgium. Ecography 28:223–235

    Article  ADS  Google Scholar 

  • GoogleMaps (2022) Google Maps. Webpage. https://www.google.com/maps. Accessed  9 Feb 2022

  • Grace JB, Scheiner SM, Schoolmaster DR (2015) Structural equation modeling: building and evaluating causal models. In: Fox GA, Negrete-Yanlelevich S, Sosa VJ (eds) Ecological statistics: from principles to applications. Oxford University Press, New York, NY, pp 168–199

    Chapter  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Hamberg L, Lehvävirta S, Kotze DJ (2009) Forest edge structure as a shaping factor of understorey vegetation in urban forests in Finland. For Ecol Manage 257:712–722

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  ADS  CAS  PubMed  Google Scholar 

  • Heckmann KE, Manley PN, Schlesinger MD (2008) Ecological integrity of remnant montane forests along an urban gradient in the Sierra Nevada. For Ecol Manage 255:2453–2466

    Article  Google Scholar 

  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12:e0169748

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants, vol 2. Institute of Terrestrial Ecology, ECOFACT (Technical Annex)

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363

    Article  PubMed  Google Scholar 

  • Honnay O, Verheyen K, Hermy M (2002) Permeability of ancient forest edges for weedy plant species invasion. For Ecol Manage 161:109–122

    Article  Google Scholar 

  • Hui N, Jumpponen A, Francini G, Kotze DJ, Liu X, Romantschuk M, Strömmer R, Setälä H (2017) Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environ Microbiol 19:1281–1295

    Article  PubMed  Google Scholar 

  • Jerem P, Mathews F (2021) Trends and knowledge gaps in field research investigating effects of anthropogenic noise. Conserv Biol 35:115–129

    Article  PubMed  Google Scholar 

  • Kageyama SAKA, Posavatz NRR, Waterstripe KEWE, Jones SJJJ, Bottomley PJBJ, KermitCromackK J, Cromack, and D. D. M. D. Myrold. (2008) Fungal and bacterial communities across meadow–forest ecotones in the western Cascades of Oregon. Can J for Res 38:1053–1060

    Article  Google Scholar 

  • Kahan AY, Currie WS, Brown DG (2014) Nitrogen and Carbon Biogeochemistry in Forest Sites along an Indirect Urban-Rural Gradient in Southeastern Michigan. Forests 5:643–665

    Article  Google Scholar 

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kleerekoper L, van Esch M, Salcedo TB (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38

    Article  Google Scholar 

  • Konijnendijk CC (2003) A decade of urban forestry in Europe. Forest Policy Econ 5:173–186

    Article  Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Leuschner C, Ellenberg H (2017) Vegetation ecology of central Europe. Springer

    Book  Google Scholar 

  • Li X, Zhou Y, Hejazi M, Wise M, Vernon C, Iyer G, Chen W (2021) Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Commun Earth Environ 2:201

    ADS  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Lindsey AA, Newman JE (1956) Use of Official Wather Data in Spring Time: Temperature Analysis of an Indiana Phenological Record. Ecology 37:812–823

    Article  Google Scholar 

  • Luo X, Li W (2014) Scale effect analysis of the relationships between urban heat island and impact factors: case study in Chongqing. J Appl Remote Sens 8:084995

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  ADS  CAS  PubMed  Google Scholar 

  • Maes SL, Blondeel H, Perring MP, Depauw L, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kirby K, Kopecký M, Máliš F, Wulf M, Verheyen K (2019) Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. For Ecol Manage 433:405–418

    Article  Google Scholar 

  • Malmivaara-Lämsä M, Hamberg L, Haapamäki E, Liski J, Kotze DJ, Lehvävirta S, Fritze H (2008) Edge effects and trampling in boreal urban forest fragments – impacts on the soil microbial community. Soil Biol Biochem 40:1612–1621

    Article  Google Scholar 

  • Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United-States. Biol Cons 66:185–194

    Article  Google Scholar 

  • Meeussen C, Govaert S, Vanneste T, Bollmann K, Brunet J, Calders K, Cousins SAO, De Pauw K, Diekmann M, Gasperini C, Hedwall P-O, Hylander K, Iacopetti G, Lenoir J, Lindmo S, Orczewska A, Ponette Q, Plue J, Sanczuk P, Selvi F, Spicher F, Verbeeck H, Zellweger F, Verheyen K, Vangansbeke P, De Frenne P (2021a) Microclimatic edge-to-interior gradients of European deciduous forests. Agric for Meteorol 311

  • Meeussen C, Govaert S, Vanneste T, Haesen S, Van Meerbeek K, Bollmann K, Brunet J, Calders K, Cousins SAO, Diekmann M, Graae BJ, Iacopetti G, Lenoir J, Orczewska A, Ponette Q, Plue J, Selvi F, Spicher F, Sørensen MV, Verbeeck H, Vermeir P, Verheyen K, Vangansbeke P, De Frenne P (2021b) Drivers of carbon stocks in forest edges across Europe. Sci Total Environ 759:143497

    Article  ADS  CAS  PubMed  Google Scholar 

  • Meineke EK, Dunn RR, Sexton JO, Frank SD (2013) Urban Warming Drives Insect Pest Abundance on Street Trees. PLoS ONE 8:e59687

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science 298:2173–2176

    Article  ADS  CAS  PubMed  Google Scholar 

  • Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105

    Article  ADS  CAS  PubMed  Google Scholar 

  • Melliger RL, Rusterholz HP, Baur B (2017) Ecosystem functioning in cities: Combined effects of urbanisation and forest size on early-stage leaf litter decomposition of European beech (Fagus sylvatica L.). Urban For Urban Green 28:88–96

    Article  Google Scholar 

  • Meyer S, Rusterholz H-P, Salamon J-A, Baur B (2020) Leaf litter decomposition and litter fauna in urban forests: Effect of the degree of urbanisation and forest size. Pedobiologia 78:150609

  • Mgelwa AS, Kabalika Z, Hu Y-L (2020) Increasing importance of nitrate-nitrogen and organic nitrogen concentrations in bulk and throughfall precipitation across urban forests in southern China. Glob Ecol Conserv 22:e00983

    Google Scholar 

  • Miller JD, Hutchins M (2017) The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J Hydrol Reg Stud 12:345–362

    Google Scholar 

  • Mölder A, Meyer P, Nagel R-V (2019) Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. For Ecol Manage 437:324–339

    Article  Google Scholar 

  • Moser-Reischl A, Rahman MA, Pauleit S, Pretzsch H, Rötzer T (2019) Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc Urban Plan 183:88–99

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • NCEI (2021) GHCN (Global Historical Climatology Network)-Daily.in. NOAA (NCEI, editor)

    Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models. Regression, analysis of variance, and experimental design. Irwin, Homewood, USA

    Google Scholar 

  • Nikula S, Vapaavuori E, Manninen S (2010) Urbanization-related changes in European aspen (Populus tremula L.): leaf traits and litter decomposition. Environ Poll 158(6):2132–2142

    Article  CAS  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24

    ADS  Google Scholar 

  • Oke TR (2002) Boundary layer climates. Routledge

    Book  Google Scholar 

  • Pavao-Zuckerman MA, Coleman DC (2005) Decomposition of chestnut oak (Quercus prinus) leaves and nitrogen mineralization in an urban environment. Biol Fertil Soils 41:343–349

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2021) nlme: linear and nonlinear mixed effect models. R package. https://CRAN.R-project.org/package=nlme

    Google Scholar 

  • Portillo-Estrada M, Pihlatie M, Korhonen JFJ, Levula J, Frumau AKF, Ibrom A, Lembrechts JJ, Morillas L, Horváth L, Jones SK, Niinemets Ü (2016) Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13:1621–1633

    Article  ADS  CAS  Google Scholar 

  • Pouyat RV, Carreiro MM (2003) Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient. Oecologia 135:288–298

    Article  ADS  PubMed  Google Scholar 

  • Pouyat RV, McDonnell MJ, Pickett STA (1997) Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land use gradient. Urban Ecosyst 1:117–131

    Article  Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manage 220:66–74

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • R Development Core Team version 4.1.1 (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rakoto PY, Deilami K, Hurley J, Amati M, Sun Q (2021) Revisiting the cooling effects of urban greening: Planning implications of vegetation types and spatial configuration. Urban For Urban Green 64:127266

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927

    Article  ADS  Google Scholar 

  • Referowska-Chodak E (2019) Pressures and Threats to Nature Related to Human Activities in European Urban and Suburban Forests. Forests 10:765

    Article  Google Scholar 

  • Rega-Brodsky CC, Aronson MFJ, Piana MR, Carpenter E-S, Hahs AK, Herrera-Montes A, Knapp S, Kotze DJ, Lepczyk CA, Moretti M, Salisbury AB, Williams NSG, Jung K, Katti M, MacGregor-Fors I, MacIvor JS, La Sorte FA, Sheel V, Threfall CG, Nilon CH (2022) Urban biodiversity: State of the science and future directions. Urban Ecosyst 25:1083–1096

    Article  Google Scholar 

  • Remy E, Wuyts K, Boeckx P, Ginzburg S, Gundersen P, Demey A, Van Den Bulcke J, Van Acker J, Verheyen K (2016) Strong gradients in nitrogen and carbon stocks at temperate forest edges. For Ecol Manage 376:45–58

    Article  Google Scholar 

  • Remy E, Wuyts K, Van Nevel L, De Smedt P, Boeckx P, Verheyen K (2018) Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges. Ecosystems 21:755–771

    Article  Google Scholar 

  • Remy E, Wuyts K, Verheyen K, Gundersen P, Boeckx P (2018) Altered microbial communities and nitrogen availability in temperate forest edges. Soil Biol Biochem 116:179–188

    Article  CAS  Google Scholar 

  • Richards EH, Norman AG (1931) The biological decomposition of plant materials: Some factors determining the quantity of nitrogen immobilised during decomposition. Biochem J 25:1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries L, Robert J, Fletcher J, Battin J, Sisk TD (2004) Ecological Responses to Habitat Edges: Mechanisms, Models, and Variability Explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124–131

    Article  CAS  Google Scholar 

  • Riutta T, Clack H, Crockatt M, Slade EM (2016) Landscape-Scale Implications of the Edge Effect on Soil Fauna Activity in a Temperate Forest. Ecosystems 19:534–544

    Article  Google Scholar 

  • Rogister J (1978) De ekologische mR-en mN-waarden van de kruidlaag en de humuskwaliteit van bosplantengezelschappen. Proefstation van Waters en Bossen

    Google Scholar 

  • Santonja M, Fernandez C, Gauquelin T, Baldy V (2015) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82

    Article  CAS  Google Scholar 

  • Seidelmann KN, Scherer-Lorenzen M, Niklaus P (2016) Direct vs. microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. Plos One 11:e0160569

    Article  PubMed  PubMed Central  Google Scholar 

  • Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS ONE 6:e23777

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    Article  PubMed  Google Scholar 

  • Smoyer KE, Rainham DGC, Hewko JN (2000) Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996. Int J Biometeorol 44:190–197

    Article  CAS  PubMed  Google Scholar 

  • Şöhretoğlu D, Renda G (2020) The polyphenolic profile of Oak (Quercus) species: a phytochemical and pharmacological overview. Phytochem Rev 19:1379–1426

    Article  Google Scholar 

  • Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW (2008) Consequences of Considering Carbon-Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle. J Clim 21:3776–3796

    Article  ADS  Google Scholar 

  • Standish RJ, Williams PA, Robertson AW, Scott NA, Hedderley DI (2004) Invasion by a Perennial Herb Increases Decomposition Rate and Alters Nutrient Availability in Warm Temperate Lowland Forest Remnants. Biol Invasions 6:71–81

    Article  Google Scholar 

  • Staude IR, Waller DM, Bernhardt-Römermann M, Bjorkman AD, Brunet J, De Frenne P, Hédl R, Jandt U, Lenoir J, Máliš F, Verheyen K, Wulf M, Pereira HM, Vangansbeke P, Ortmann-Ajkai A, Pielech R, Berki I, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Macek M, Malicki M, Naaf T, Nagel TA, Petřík P, Reczyńska K, Schei FH, Schmidt W, Standovár T, Świerkosz K, Teleki B, Van Calster H, Vild O, Baeten L (2020) Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat Ecol Evol 4:802–808

    PubMed  Google Scholar 

  • Sui R, Pringle HC, Barnes EM (2019) Soil moisture sensor test with mississippi delta soils. Trans ASABE 62:363–370

    Article  CAS  Google Scholar 

  • Sun Y, Zhao S (2016) Leaf litter decomposition in urban forests: test of the home-field advantage hypothesis. Ann for Sci 73:1063–1072

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson J (1979) Decomposition in terrestrial ecosystems. University of California Press

    Google Scholar 

  • Tresch S, Frey D, Le Bayon RC, Zanetta A, Rasche F, Fliessbach A, Moretti M (2019) Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci Total Environ 658:1614–1629

    Article  ADS  CAS  PubMed  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • UN (2019) World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). United Nations, Departement of Economic and Social Affairs Population Division, New York

    Google Scholar 

  • Vaidelys T, Straigytė L, Manton M (2020) Effects of Seasonality, Tree Species and Urban Green Space on Deciduous Leaf Litter Decomposition in Lithuania. Sustainability 12:2210

    Article  CAS  Google Scholar 

  • van den Bosch M, Ode Sang Å (2017) Urban natural environments as nature-based solutions for improved public health – A systematic review of reviews. Environ Res 158:373–384

    Article  PubMed  Google Scholar 

  • van Hove LWA, Jacobs CMJ, Heusinkveld BG, Elbers JA, van Driel BL, Holtslag AAM (2015) Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build Environ 83:91–103

    Article  Google Scholar 

  • Vaz CMP, Jones S, Meding M, Tuller M (2013) Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J 12:vzj2012-0160

    Article  Google Scholar 

  • Vaz Monteiro M, Levanič T, Doick KJ (2017) Growth rates of common urban trees in five cities in Great Britain: A dendrochronological evaluation with an emphasis on the impact of climate. Urban For Urban Green 22:11–23

    Article  Google Scholar 

  • Verheyen K, Baeten L, De Frenne P, Bernhardt-Romermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hedl R, Heinken T, Hermy M, Hommel P, Kirby K, Naaf T, Peterken G, Petrik P, Pfadenhauer J, Van Calster H, Walther GR, Wulf M, Verstraeten G (2012) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–365

    Article  Google Scholar 

  • Wallace KJ, Laughlin DC, Clarkson BD, Schipper LA (2018) Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification. Ecosphere 9:e02534

  • Wang B, Verheyen K, Baeten L, De Smedt P (2021) Herb litter mediates tree litter decomposition and soil fauna composition. Soil Biol Biochem 152:108063

  • Wang X, Dallimer M, Scott CE, Shi W, Gao J (2021) Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Sci Total Environ 770:145211

  • Wilson SM, Pyatt DG, Malcolm DC, Connolly T (2001) The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. For Ecol Manage 140:101–116

    Article  Google Scholar 

  • Wolff NH, Zeppetello LRV, Parsons LA, Aggraeni I, Battisti DS, Ebi KL, Game ET, Kroeger T, Masuda YJ, Spector JT (2021) The effect of deforestation and climate change on all-cause mortality and unsafe work conditions due to heat exposure in Berau, Indonesia: a modelling study. Lancet Planet Health 5:e882–e892

    Article  PubMed  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, PeÑUelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–942

    Article  ADS  Google Scholar 

  • Wuyts K, De Schrijver A, Staelens J, Verheyen K (2013) Edge Effects on Soil Acidification in Forests on Sandy Soils Under High Deposition Load. Water Air Soil Pollut 224:1545

    Article  ADS  Google Scholar 

  • Xie T, Shan L, Su P (2020) Drought conditions alter litter decomposition and nutrient release of litter types in an agroforestry system of China. Ecol Evol 10:8018–8029

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanaga D, Van De Kerchove R, De Keersmaecker W, Souverijns N, Brockmann C, Quast R, Wevers J, Grosu A, Paccini A, Vergnaud S, Cartus O, Santoro M, Fritz S, Georgieva I, Lesiv M, Carter S, Herold M, Li L, Tsendbazar N-E, Ramoino F, Arino O (2021) ESA WorldCover 10 m 2020 v100. In: E. S. Agency, editor

  • Zellweger F, Coomes D, Lenoir J, Depauw L, Maes SL, Wulf M, Kirby KJ, Brunet J, Kopecky M, Malis F, Schmidt W, Heinrichs S, den Ouden J, Jaroszewicz B, Buyse G, Spicher F, Verheyen K, De Frenne P (2019) Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob Ecol Biogeogr 28:1774–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang X, Chen X, Liu M, Xu Z, Wei H (2020) Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests. Sci Rep 10:15933

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziter CD, Pedersen EJ, Kucharik CJ, Turner MG (2019) Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc Natl Acad Sci USA 116:7575–7580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Luc Willems, Robbe De Beelde, Kris Ceunen for technical support with the fieldwork and laboratory analyses. The authors thank Eliza Steffen and Michał Lipa for help with the fieldwork, Patrick Huvenne, Frederik Vaes (Belgium), Matthieu Bourre and Séverine Rouet (France) and Grzegorz Skurczak, Djurgårdsförvaltningen (Sweden) for permission to conduct the research in the urban forests, and Tomasz Krupa for help in selecting the suitable study sites in Katowice. Earlier versions of the manuscript benefitted from constructive comments by two reviewers and the subject editor.

Funding

Research Foundation Flanders (FWO) (ASP035-19 and 1221523N), European Research Council (ERC) (FORMICA 757833), FWO scientific network FLEUR, Agence Nationale de la Recherche (ANR-19-CE32-0005-01 and ANR-21-CE32-0012), Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (193645), Bolin Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Contributions

KDP, PDF, PV, LD and KV conceived the ideas and designed methodology; all authors collected data; KDP led the data analyses and the writing of the manuscript in close collaboration with PDF, LD, PV and KV. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Karen De Pauw.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

The original online version of this article was revised: The affiliation was updated from "UMR CNRS 7058 “Ecologie et Dynamique des Systemes Anthropises” (EDYSAN), Universite de Picardie Jules Verne, 1 rue des Louvels, 80037 Amiens Cedex, France" to UMR CNRS 7058 “Ecologie et Dynamique des Systemes Anthropises” (EDYSAN), Universitee de Picardie Jules Verne, 1 rue des Louvels, 80037 Amiens Cedex, France.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2378 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Pauw, K., Depauw, L., Cousins, S.A.O. et al. The urban heat island accelerates litter decomposition through microclimatic warming in temperate urban forests. Urban Ecosyst (2023). https://doi.org/10.1007/s11252-023-01486-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11252-023-01486-x

Keywords

Navigation